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5.1 Fixed vs. Random. Comparison

Fixed Random

Interestedin drawing 
inferences / making 
predictions

Not particularly interested in 
any particular value or level

Represent values fromthe 
entire ‘universe’ of interest

A (random)sample froma 
larger pool of potential values

Levels notinterchangeable Levels interchangeable (could
swap / relabel levels without 
any change in meaning)

Directly manipulated Introduces incidentalerror 
(e.g., between subjects, 
blocks, sites, etc.)

Few levels / worth sacrificing 
d.f. to fit model

Manylevels / cannot sacrifice 
d.f. to fit model



5.1 Fixed vs. Random. From LM to LME

ὣͯὢ‍ ‭

ὣͯ‍ ὦ ‭

Grand mean 
effect

Group variation around 
grand mean



5.1 Fixed vs. Random.  Why mixed models?

ÅMore power than modeling the means of groups

Å Reduces degrees of freedom necessary to fit model and estimate 
parameters

Å Accounts for uneven sampling within groups by using 
information across groups to inform the individual group means 
(Best Linear Unbiased Predictors, BLUPs)

Å Can account  for non-independenceof observations by explicitly 
modeling their correlations (e.g., among sites, individuals, etc.)



5.1 Fixed vs. Random.  Random structure

Different configurations of random structure:

1. Varying intercept, fixed slope

2. Fixed intercept, varying slope

3. Varying intercept, varying slope



5.1 Fixed vs. Random.  Varying intercept

ÅEstimates different intercept, same slope for all levels of the 
random effect

vint.mod < - lme (y ~ x, random = ~ 1 | level, data)

coef (vint.mod)

(Intercept)        x

A    20.85281 5.036269

B    46.55985 5.036269

C   100.52901 5.036269



5.1 Fixed vs. Random.  Varying intercept

ÅEstimates different intercept, same slope for all regions



5.1 Fixed vs. Random.  Varying intercept

ÅGood for block designs, repeated measures

ÅCan lead to overconfident estimates if levels are expected to 
respond differently (e.g., individuals in a drug trial)



5.1 Fixed vs. Random.  Varying intercept AND slope

ÅEstimates different slope, different intercept for all levels

vint.vslope.mod < - lme (y ~ x, random = ~ x | level, data)

coef (vint.vslope.mod)

(Intercept)          x

A    32.44403  0.6065508

B    49.57047  3.7184608

C    86.17923 10.6282993



5.1 Fixed vs. Random.  Varying intercept AND slope

ÅEstimates different slope, different intercept for all levels



5.1 Fixed vs. Random.  Varying intercept AND slope

ÅAddresses multiple sources of non-independence of within 
and between levels, leading to lower Type I and Type II error

ÅRandom slopes can be extracted and used in other analyses 
(lacks error)

ÅComputationally intensive, may lead to non-convergence



5.1 Fixed vs. Random.  Fixed intercept

ÅEstimates different slope, same intercept for all levels

vslope.mod < - lme (y ~ x, random = ~ 0 + x | level, data)

coef (vslope.mod)

(Intercept)         x

A    56.12611 - 6.249917

B    56.12611  1.568506

C    56.12611 19.465590



5.1 Fixed vs. Random.  Varying slope

ÅEstimates different slope, same intercept for all regions



5.1 Fixed vs. Random. Nesting

Å Hierarchical models represent nested random terms (e.g., 
site within region)

Å Nesting further addresses non-independence by 
modeling correlations within and between levels of the 
hierarchy

ÅGood for stratified sampling designs (varying intercept) 
and split-plot designs (varying slope, varying intercept)



5.1 Fixed vs. Random.  Nesting

vint.nested.mod < - lme (y ~ x, random = ~ x | level1 / level2, data)

coef (vint.nested.mod)

(Intercept)          x

A/a    32.43744  0.6088132

A/b    32.43746  0.6088135

B/a    49.57996  3.7148397

B/b    49.57997  3.7148397

C/a    86.17643 10.6293257

C/b    86.17642 10.6293253



5.1 Fixed vs. Random. Crossed effects

ÅMultiple random effects that are not nested but apply 
independently to the observation (e.g., space and time)



5.1 Fixed vs. Random. Random structures

(1|group) random group intercept

(x|group) = (1+x|group)
random slope of x within group with correlated 
intercept

(0+x|group)= (-1+x|group)
random slope of x within group: no variation in 
intercept

(1|group) + (0+x|group)
uncorrelated random intercept and random 
slope within group

(1|site/block) = (1|site)+(1|site:block)
intercept varying among sites and among 
blocks within sites (nested random effects)

site+(1|site:block)
fixedeffect of sites plus random variation in 
intercept among blocks within sites

(x|site/block)= (x|site)+(x|site:block)= (1 + 
x|site)+(1+x|site:block)

slope and intercept varying among sites and 
among blocks within sites

(x1|site)+(x2|block) two different effects, varying at different levels

x*site+(x|site:block)
fixed effect variation of slope and intercept 
varying among sites and random variation of 
slope and intercept among blocks within sites

(1|group1)+(1|group2)
intercept varying among crossed random 
effects (e.g. site, year)

http://glmm.wikidot.com/faq

http://glmm.wikidot.com/faq


5.1 Fixed vs. Random. A warning

Å Assumes fixed and random effects are uncorrelated

Å Correlations (e.g., sites along a latitudinal gradient & 
temperature) can lead to biased estimates of fixed effects 
(inflated Type I error)

Å If possible, fit random effects as fixed effects and 
compare parameter estimates

Å Need to ensure appropriate replication at lowestlevel of 
nested factors (5-6 levels, minimum) –otherwise, fit as 
fixed effects



5.1 Fixed vs. Random. Different distributions

Ålme4 can fit many kinds of different distributions using 
glmer

ÅDoes not provide P-values (d.d.f uncertain, see: 
https://stat.ethz.ch/pipermail/r-help/2006-
May/094765.html) 

ÅNeed to turn to pbkrtestpackage which estimates d.d.f. 
using the Kenward-Rogers approximation (less finicky 
than lmerTest)

https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html


5.1 Fixed vs. Random. Different distributions

Ånlmecan only handle normal distributions

ÅIves (2015): “For testing the significance of regression 
coefficients, go ahead and log-transform count data”

ÅglmmPQLin the MASS package uses penalized quasi-
likelihood to fit models, can incorporate many different 
distributions and their quasi- equivalents (e.g., quasi-
Poisson)

ÅQuasi-distributions estimate a separate term for how the 
variance scales with the mean, so ideal for over/under-
dispersed data

ÅQuasi-likelihood means no likelihood based statistics 
(e.g., AIC, LRT, etc.) for any models fit with glmmPQL



5.1 Fixed vs. Random. Testing significance

ÅNo matter what reviewers insist, you cannot test significance 
of random effects

ÅIf you want to assess significance, model them as fixed effects

ÅAlternatives:
ÅDrop random effects and compare to mixed model using 

AIC/BIC
ÅExamine variance components using varcomp

ÅIf they are sufficiently large relative to residual 
variance probably worth keeping them in

ÅCompare conditional and marginal R2s
ÅDefend yourself philosophically: these are known sources 
of variation, why not account for them, even if they don’t 
contribute, better safe than sorry!



5.1 Fixed vs. Random. Troubleshooting

ÅR has the most infuriating error messages

ÅCan sometimes solve by switching to a different optimizer
ÅlmeControl (opt = ñoptim ò) usually works

ÅReduce tolerance for convergence
ÅlmeControl ( tol = 1e - 4)

ÅRespecifyrandom structure
ÅOptimizer constrained to have cov> 0, can sometimes get stuck 

bouncing around when random components are very close to 0

Åhttps://stackexchange.com/
ÅBen Bolker to the rescue! 

https://dynamicecology.wordpress.com/2013/10/04/wwbbd/

https://stackexchange.com/
https://dynamicecology.wordpress.com/2013/10/04/wwbbd/


5.2 Pseudo-R2s



5.2 Pseudo-R2s. Omnibus test

ÅFisher’s C is the global fit statistic for local estimation but has 
many shortcomings:

ÅSensitive to the number of d-septests and the complexity 
of the model (harder to reject as the complexity 
increases)

ÅSensitive to the size of the dataset (e.g., high n leads to 
low P)

ÅFails symmetricity when dealing with unlinked non-normal 
intermediate variables



5.2 Pseudo-R2s. Local tests

ÅHow do we infer the confidence in our SEM?

ÅExamine standard errors of individual paths, qualitatively 
assess cumulative precision

ÅExplore variance explained (i.e., R2), qualitatively assess 
cumulative precision



5.2 Pseudo-R2s. General linear regression

ÅCoefficient of determination (R2) = proportion of variance in 
response explained by fixed effects

ÅFor OLS regression, simply 1- the ratio of unexplained (error) 
variance (e.g., SSerror) over the total explained variance (e.g., 
SStotal)

ÅRanges (0, 1), independent of sample size

ÅNot good for model comparisons since R2 monotonically 
increases with model complexity



5.2 Pseudo-R2s. Generalized linear regression

ÅLikelihood estimation is not attempting to minimize variance 
but instead obtain parameters that maximize the likelihood of 
having observed the data

ÅIn a likelihood framework, equivalent R2 = 1- the ratio of the 
log-likelihood of the full model over the log-likelihood of the 
null (intercept-only) model

ÅLeads to identical R2 as OLS for normal (Gaussian) 
distributions, not so for GLM –need to use likelihood-based 
pseudo-R2 (e.g., McFadden, Nagelkerke)



5.2 Pseudo-R2s. Generalized mixed models

ÅBecomes even worse for mixed models because variance is 
partitioned among levels of the random factor, so what is the 
error variance?

ÅNeed a new formulation of R2 :

ÅMarginal R2 = variance explained by fixed effects only

Fixed effects variance

Fixed effects variance

Random effects variance

Residual variance

Distribution-specific
variance 



5.2 Pseudo-R2s. Generalized mixed models

Å Conditional R2 = variance explained by both the fixed and 
random effects

Fixed effects variance

Fixed effects variance

Random effects variance

Residual variance

Distribution-specific
variance 

Random effects variance



5.2 Pseudo-R2s. Generalized mixed models

Å Comparison of marginal and conditional R2 can lead to 
roundabout assessmentof ‘significance’ of the random 
effects (e.g., if conditional R2 is larger relative to marginal R2)

ÅBest to report both and allow readers to determine how their 
magnitude affects the inferences



5.2 Pseudo-R2s. 

Å rsquared returns (pseudo)-R2 values for most models and 
distributions:

library( nlme )

fm1 < - lme (distance ~ age, data = Orthodont )

piecewiseSEM :: rsquared (fm1)

Response   family     link   Marginal Conditional

1 distance gaussian identity 0.07832525   0.9388876



5.3 SEM Example

5_Mixed_Models.R



5.3 SEM Example. Shipley 2009

ÅHypothetical dataset: predicting latitude effect on survival of a 
tree species

ÅRepeated measures on 5 subjects at 20 sites from 1970-2006

ÅSurvival (0/1) influenced by phenology (degree days until bud 
break, Julian days until bud break), size (stem diameter growth)

Latitude
Degree 
days

Date Growth Survival



5.3 SEM Example. Shipley 2009

ÅTwo distributions: normal, binary (survival)

ÅRandom effects: 
ÅSite-only: latitude
ÅSite and year: degree days, date
ÅSite, year, and subject: diameter, survival

Latitude
Degree 
days

Date Growth Survival



5.3 SEM Example. What is the basis set?

Latitude
Degree 
days

Date Growth Survival

ÅDate Lat| (Degree days)
ÅGrowth Lat| (Date)
ÅSurvival Lat| (Growth)
ÅGrowth Degree days | (Date, Lat)
ÅSurvival Degree days | (Growth, Lat)
ÅSurvival Date | (Growth, Degree days)



5.3 SEM Example. List of equations

Latitude
Degree 
days

Date Growth Survival

shipley <- read.csv("shipley.csv")

shipley.sem <- psem(

lme (DD ~ lat , random = ~1|site/tree, na.action = na.omit ,

data = shipley ),

lme (Date ~ DD, random = ~1|site/tree, na.action = na.omit ,

data = shipley ),

lme (Growth ~ Date, random = ~1|site/tree, na.action = na.omit ,

data = shipley ),

glmer (Live ~ Growth + (1|site) + (1|tree),

family=binomial(link = "logit"), data = shipley )

)



5.3 SEM Example. Evaluate fit

Latitude
Degree 
days

Date Growth Survival

Tests of directed separation:

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

Date  ~  lat + ...  - 0.0091    0.1135   18    - 0.0798  0.9373 

Growth  ~  lat + ...  - 0.0989    0.1107   18    - 0.8929  0.3837 

Live  ~  lat + ...   0.0305    0.0297   NA     1.0279  0.3040 

Growth  ~  DD + ...  - 0.0106    0.0358 1329    - 0.2967  0.7667 

Live  ~  DD + ...   0.0272    0.0271   NA     1.0041  0.3153 

Live  ~  Date + ...  - 0.0466    0.0298   NA    - 1.5615  0.1184 



5.3 SEM Example. Evaluate fit

Latitude
Degree 
days

Date Growth Survival

Goodness - of - fit:

Global model: Fisher's C = 11.534 with P - value = 0.484 and on 12 degrees of 

freedom

Individual R - squared:

Response Marginal Conditional

DD     0.49        0.70

Date     0.41        0.98

Growth     0.11        0.84

Live     0.11        0.13



5.3 SEM Example. Evaluate fit



5.3 SEM Example. Evaluate fit

Latitude
Degree 
days

Date Growth Survival

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

DD       lat - 0.8355    0.1194   18    - 6.9960       0      - 0.6877 ***

Date        DD  - 0.4976    0.0049 1330  - 100.8757       0      - 0.6281 ***

Growth      Date   0.3007    0.0266 1330    11.2917       0       0.3824 ***

Live    Growth   0.3479    0.0584   NA     5.9548       0       3.8244 ***

---

Signif . codes:  0 ó***ô 0.001 ó**ô 0.01 ó*ô 0.05 óô 1



5.3 SEM Example. Evaluate fit

Latitude
Degree 
days

Date Growth Survival

-0.69 -0.63 0.38 3.82

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

DD       lat - 0.8355    0.1194   18    - 6.9960       0      - 0.6877 ***

Date        DD  - 0.4976    0.0049 1330  - 100.8757       0      - 0.6281 ***

Growth      Date   0.3007    0.0266 1330    11.2917       0       0.3824 ***

Live    Growth   0.3479    0.0584   NA     5.9548       0       3.8244 ***

---

Signif . codes:  0 ó***ô 0.001 ó**ô 0.01 ó*ô 0.05 óô 1



Latitude
Degree 
days

Date

Growth Survival

Latitude
Degree 
days

Date Growth Survival

5.3 SEM Example. Compare these models



Latitude
Degree 
days

Date

Growth Survival

Latitude
Degree 
days

Date Growth Survival

5.3 SEM Example. Compare these models

AIC = 49.53

AIC = 71.24



Yvon-Durocher et al (2015): Experimental warming on 
phytoplankton diversity and biomass

Warmed outdoor 
mesocosms for 5 

years (!!) and 
measured 

phytoplankton 
diversity & biomass



5.3 SEM Example. Your turn…

Std.Temp

Prich

Pbio

GPP

CR

Include random effect of Pond.ID!



5.3 SEM Example. Your turn…

Std.Temp

Prich

PbioGPP

CR

R2 = 0.21

R2 = 0.17

R2 = 0.55R2 = 0.10

0.34

0.35

P= 0.063



5.3 SEM Example. Your turn…

ÅTry removing incomplete cases first: complete.cases

ÅWhat is their mistake here?

ÅMethods state: ñwith multiple measurements of variables 
made seasonally, nested within replicate mesocosms,ò but 

then, ña path model as a set of hierarchical linear mixed 

effects models, each of which included hypothesized 

relationships between a response variable and a set of 

predictors as fixed effects and mesocosm ID as a random 

effect on the intercept.ò 

ÅPlay with the random structure?

ÅWhat about by treatment (Ambient vs. Heated)?

ÅCan anyone reproduce this analysis? Is it time to write a 
response?


