Factors affecting trophic control of community structure and ecosystem functioning in experimental seagrass (*Zostera marina* L.) mesocosms

David R. Godschalk¹; Jonathan S. Lefcheck¹; J. Emmett Duffy¹,²

¹Virginia Institute of Marine Science, VA 23062
²Smithsonian Institution, DC 20560
drgodschalk@vims.edu

1. Background
- The growth of opportunistic microalgae via nutrient fertilization (eutrophication) can lead to eelgrass decline through light limitation and competition for limiting nutrients.
- Invertebrate mesograzers, such as amphipods, isopods, gastropods, and shrimps, can mediate the overgrowth of algae, indirectly benefitting seagrasses.
- With increasing nutrient pollution driving eutrophication, and cascading effects of overfishing, it is important to understand the relationship between the top-down control by grazers and the bottom-up control by nutrients in determining seagrass structure and function.

2. Specific Aims
1. What are the effects of changing light, nutrients, and grazers on functioning of eelgrass communities (*Zostera marina* L.)?
2. Is this system under stronger top-down (grazer) or bottom-up (nutrient) control?

3. Methods
- We manipulated:
 - **Grazers (presence/absence);** Grazer presence treatments were inoculated with 10 individuals each of the isopod *Idotea balthica* and the amphipod *Gammarus mucronatus*.
 - **Light (shaded/unshaded);** Shaded treatments were covered with windowscreen leading to 42% reduction in light.
 - **Nutrients (fertilized/ambient);** Osmocote (N:P:K 3:1:2) was placed in suspended, perforated PVC tubes in fertilized treatments.
- Experiments were conducted in a set of 64 flow-through seawater mesocosms in the York River Estuary, Chesapeake Bay, USA in summer 2008.
- After 4 weeks, plant material was harvested, separated, identified to species, and combusted to obtain ash-free dry mass (AFDM).
- All grazers were sieved by size, sorted to species, and counted. Each sieve size class was converted to biomass (in mg AFDM).
- We analyzed eelgrass above- and belowground biomass, macroalgal biomass, epiphyte biomass, and grazer biomass using three-way blocked ANOVAs.

4. Results
- **Figure 3.** Grazer presence significantly increased grazer biomass, particularly in fertilized, unshaded treatments (*p*<0.001).
- **Figure 4.** Grazers significantly decreased epiphytic algae (*p*=0.005). This effect was stronger in fertilized and shaded treatments.
- **Figure 5.** Grazer presence significantly altered macroalgae biomass in unshaded, fertilized treatments (*p*=0.02).
- **Figure 6.** There was a significant decline of eelgrass in shaded and fertilized treatments when grazers were present (*p*<0.001).

5. Discussion
- Grazers decreased epiphytic algae in all treatments, particularly in the unshaded, fertilized treatment, implying stronger top-down control.
- This top-down control did not translate to an increase in *Zostera* biomass.
- The lack of *Zostera* response is likely a combination of:
 - direct consumption of eelgrass by *I. balthica* and
 - shading by macroalgal mats, particularly in the unshaded, fertilized treatment.
- Our study emphasizes the complex interactions among plants and animals in seagrass systems.

6. Acknowledgements
We would like to thank Paul Richardson, James Douglass, Rachael Blake, Matthew Whalen and Drs. Linda Schnaffer & Rochelle Seitz. In addition, thanks to the National Science Foundation REU Program.